

三维边坡稳定分析

第1部分 ^{1.1 学习目的}

学习目的及概要

边坡稳定分析可以利用数值分析方法模拟接近实际的破坏形状,并能够更好地反映真实 现场条件。但是,只是进行边坡某一断面的二维分析,对三维边坡属性的分析上具有局限 性。二维分析和三维分析的最大差别在于是否能够反映滑动面形状、地层材料分布、、滑动 面的强度等对边坡稳定性有影响的因素。因为在二维分析上几乎可以忽略的单元,在三维分 析上反映后分析,所以可以得到更现实的分析结果。即,通过三维边坡稳定分析可考虑边坡 滑动面范围,掌握活动集中的位置,并可以以此为中心建立施工计划等。

▶模型示意图

通过本例题,可以学习如下主要功能及分析方法:

- 利用栅格面功能生成地表面、地层面
- 划分网格
- 边坡稳定分析
- 分析结果-安全系数及最大剪应变
- 分析结果-使用剪切面功能检查某一指定断面的结果

本模型是由风化土和基岩组成的三维模型。通过分析旱季和雨季下的边坡稳定性,识别可能出现破坏的部分,消除隐患。

▶剖面图

Chapter 8.三维边坡稳定分析

第2部分

分析设置

[打开附件中的开始模型(08_3DSlope_start)]

∗^{III}:分析>分析工况>设置 (Analysis > Analysis Case > Setting)

- 设置模型类型、重力方向、初始参数及分析用的单位制。单位制可以在建模过程及 确认分析结果时修改,根据设置的单位制将自动换算参数。
- 本例题是把 Z 轴作为三维模型的重力方向,单位制使用 SI 单位制(kN,m)。

▶分析设置

祈设置	
项目名称	用户名
说明	
模型类型	重力方向
③ 3D	() Y
2D	Z
◎ 轴对称	
单位制	
kN 🔻 m	▼ sec ▼
初始参数	
重力加速度(g)	9.80665 m/sec^2
水的容重	9.80665 kN/m^3
初始温度	0 [1]
平面应变厚度	1 m

第3部分

3.1 定义岩土及结构材料

定义材料及属性

定义岩土材料模型为 Mohr-Coulomb 模型, 各地层使用的材料如下表。

[单位 : kN, m]

▶ 表. 岩土材料

名称	基岩	风化土
模型类型	Mohr-Coulomb	Mohr-Coulomb
一般		
弹性模量 (E)	5.0E+06	1.0E+05
泊松比 (v)	0.25	0.30
容重(r)	23	18
Ко	1.0	0.5
渗透性		
容重(饱和)	23	18
初始孔隙比 (e0)	0.5	0.5
排水参数	排水	排水
非线性		
粘聚力(C)	500	10
摩擦角	42	19

▶定义岩土材料-一般

▶▶定义岩土材料-渗 透性

▶▶▶定义岩土材料-非

Chapter 8.三维边坡稳定分析

ł			x	材料		×	材料	
号 1 名称 各向同性	颜色		~	号 1 条	高称 基岩 颜		号 1 名称 基岩	颜色
模型类型 莫尔-库伦	Ŧ	🔲 结构	,	模型类型 莫尔	-库伦	· 🔲 结构	模型类型 莫尔-库伦	结构
一般 滲透性 事线性				一般 滲透性 非	线性		一般 渗透性 非线性	
弹性模量	5000000	kN/m²2		容重(饱和)	2	kN/m^3	↓ 粘聚力(C)	500 kN/m^2
弹性模里增量	0	kN/m^3		初始孔隙比(eo)	0.	5	粘聚力增量	0 kN/m^3
参考高度	0	m		■非饱和特性		-	参考高度粘聚力増量	0 m
泊松比	0.25			排水参数			摩擦角(Fi)	42 [deg]
容重(Gamma)	23	kN/m^3		排水			PIK6	36 Ideal
初始应力参数				● 不排水台	1松比 0.49		- 结动强度	0 (4)(m22
Ko 圖各向异性 III	0.5			Skemptor	n`s B 系数 0.9782608	1	- PULTER	• NWII 2
热学参数				渗流和固结参数				
热膨胀系数	1e-006	1/[[]]		渗透系数				
- 阻尼比(动力)				kox	KY KZ	m/noc		
阻尼比	0.05				<u> </u>	illesec		
				🔲 依赖渗透性的	9孔陳比(ck)	0.5		
				贮水率(Ss)	0 1/m	自动		
确认	取消	i	き用		确认 取注	i 适用	确认	取消 适用

3.2 定义属性

属性体现网格的物理属性。在划分网格时,将属性分配给网格组。

名称	基岩	风化土
类型	三维	三维
材料	基岩	风化土

本例题的主要目的是掌握使用栅格面生成三维地层面,边坡稳定分析(SRM)及分析结果 上。您可以从已经输入岩土属性的开始文件开始学习例题。

建模

4.1 几何建模

★□ : 几何>曲面与实体>生成面 (Geometry > Surface & Solid > Make Face)

根据包含地层和地形信息的坐标数据中生成曲面。为了使用地层面分割实体,需生成略 大于实体的面。

- 在栅格面表单上, M(X 方向栅格数量)、N(Y 方向栅格数量)分别输入'50', '50'。
- 起始点 X、Y 分别输入 '-10', '-10'。
- LX、LY 分别输入 '270'、'270'。
- 点击高度后,选择载入地形信息的 3d_slope_terrain.txt 文件。
- 点击[确认]键后,点击[适用]键。
- 用同样的方法引入地形信息的 3d_slope_strata.txt 文件来形成地层面。

面 边齐面 1001日	四	标高数据											
M(X向栅格数)	50		1	2	3	4	5	6	7	8	9	10	11
الله والمراجع المراجع		1	41.7729 41.7729	41.4015 46.3879	41.5076 45.9678	41.1182 46.1847	40.8738 45.7086	40.7864 45.5197	40.5953 45.4133	40.3339 45.3389	39.9225 45.2119	39.2286 44.7773	38.3808 43.707
N(Y)可栅格数)	50	3	45.9678 51.4	46.3879 51.0488	51.6664 51.6664	51.0488 57.2501	51.4 56.2878	50.6848 56.8105	50.4246 55.6805	50.278 55.2363	50.237 54.9825	50.1589 54.9181	49.7259 54.7049
把始占YW标	-10	5	55.6805 59.6523	56.8105 60.3638	56.2878 62.2045	57.2501 61.3427	62.7779 62.7779	61.3427 68.0349	62.2045 65.8724	60.3638 67.3225	59.6523 64.4677	59.2404 63.4682	59.0736 62.85
		7	62.85 64.2498	63.4682 65.0904	64.4677 65.9883	67.3225 67.6258	65.8724 68.235	68.0349 68.235	68.235 68.235	68.235 68.235	68.235 68.235	67.6258 68.235	65.9883 68.235
起始点Y坐标	-10	9	64.2852 64.5303	65.5386	65.867	67.8853	68.235 68.235	68.235 68.235	68.235 68.235	68.235 68.235	68.235	68.235	68.235 68.235
u u u u u den las entres	070	12	61.4692	62.8682	64.1306	64.1306	65.2992	66.3424	66.9704	67.2694	65.2188	66.4988	62.6419
LX(XIII长度)	270	14	58,5894	59.6902	60.7911	61.6604	62.4256	62.4256	63.2067	63.5494	63.555	63.1337	60.4538
	270	16	56.3383 55.2313	57.5274 56.6223	58.235 58.0133	58.6447 58.235	59.1064 58.235	59.2468 58.235	59.4437 58.235	59.4437 58.235	59.6121 58.235	59.6526 58.235	59.5231 58.235
		18	54.4659 54.3749	55.7249 55.7157	57.1159 56.3867	58.235 57.6094	58.235 58.235						
:	标高	20 21	56.6691 59.6506	57.0236 59.4617	57.2403 60.2849	57.7039 59.5024	58.103 59.7166	58.235 59.728	58.235 59.2773	58.235 58.2526	58.235 58.235	58.235 58.235	58.235 58.235
L		22 23	64.8947 70.0248	63.1375 68.816	62.5764 66.7951	63.9117 65.9967	62.205 67.7397	61.9326 65.2347	61.5537 64.3951	60.8518 63.3156	59.804 62.4466	58.4708 61.346	58.235 59.9874
		24 25	75.5039 81.0085	74.1033 79.5482	72.8031 78.1721	70.563 76.8617	69.5277 74.4285	71.6397 73.1945	68.3736 75.5841	67.2611 71.9313	65.9685 70.4277	64.5526 68.6163	62.9527 66.9812
.何组 几何组-1	▼ …	26	86.3809 91.8221	84.924 90.1748	83.5129 88.688	82.0948 87.2081	80.787 85.8253	78.317 84.5726	77.0676 82.2359	79.5361 80.9375	75.6019 83.428	73.8274 79.3839	71.8554 77.5346

★[□]:几何>曲面与实体>箱型 (Geometry > Surface & Solid > Box)

生成用于代表地基的箱型实体。

- 角坐标输入 0, 0, 0。
- 长度、宽度、高度分别输入 '250'、'250、'250'。
- 几何组输入'地基'后,点击 [确认]键。

▶生成面

▶▶栅格面信息

Chapter 8.三维边坡稳定分析

★ 1 . 几何>分割>实体 (Geometry > Divide > Solid)

用栅格面生成的地表面和地层面分割地基实体。

- 目标实体指定为'地基'实体。
- 选择辅助面后,选择过滤器修改为'面(A)'。
- 辅助面选择在上一步骤中生成的地表面和地层面。
- 几何组选择'地基'。
- 点击[确认] 键。
- 按 delete 键删除最上部无用的实体。

□2回回 □2选择目标实体2个			
分割辅助形状			
💿 📄 选择辅助曲面			
③点平面			
	1, <mark>0</mark> , 0		
	0, 1, 0		
	D, O, 1		/
◎ 分割平面			
⊚ X ⊙ Y ⊙ Z			
0	m		
□ 分割接触面 ? 选择目	标对象		/ /
☑ 删除原形状			
📝 删除辅助形状			

Тір

分割实体的辅助面必须等于或大于实体面积。满足不了这种情况时,实体可能会变成 壳(Shell)或形状组合(Compound)。

4.2 生成网格

* ¹ : 网格>生成>三维 (Mesh > Generate > 3D)

- 在自动-实体表单上,目标选择上部实体。
- 尺寸输入 '10'。
- 生成网格方式指定为'混合网格生成器'。
- 勾选'配选相邻面'。
- 属性指定为 '2:风化土', 网格组名称输入 '风化土'。
- 点击>>键,在高级选项上,勾选生成高阶单元后,点击[确认]键。

- ▶分割实体
- ▶▶分割的实体

- **Basic Tutorials**
- 点击[适用]键,生成风化土网格。
- 用同样的方法生成对'基岩'的网格。

Тір

网格作为把几何形状传递到有限元分析求解器上的手段,分析结果的准确度主要在于 网格的品质。一般尺寸越小、越接近正多边形/正多面体的网格形状越能得到好的结 果,矩形/六面体单元比三角形/四面体单元更好。但是,对于复杂的几何模型,如果 划分网格时无法生成质量较好的矩形单元,使用三角形单元比使用质量不好的矩形单 元更好。

GTS NX 提供"混合网格生成器(以六面体为主)",以此生成最优的网格质量。在二 维和三维边坡稳定分析时,使用强度折减法(SRM)。

使用低阶单元时,计算的安全系数会相对偏大。这是因为与高阶单元相比,低阶单元 的刚性偏大。基于上述原因,在进行基于强度折减法的边坡稳定分析时,使用高阶单 元可以得到更合理的结果。使用低阶单元则根据模型可能得到有些不恰当的结果。

因此,在进行基于强度折减法的边坡稳定分析时,建议采用高阶单元。

分析设置

5.1. 设置荷载条件 第5部分

★ * : 静力/边坡分析>荷载>自重 (Static/Slope Analysis > Load > Self Weight)

定义自重。重力是由岩土、结构的容重乘以默认设置的重力加速度后自动计算。输入某 方向的比例系数置即可。程序默认设置重力方向为 Z 方向,比例系数为-1。

- '名称'输入'自重-1',荷载组输入'自重'。
- 输入重力加速度方向 Gz 上比例系数'-1'。
- 点击[确认] 键。

5.2 设置边界条件

★ 金:静力/边坡分析>边界条件>约束(Static/Slope Analysis > Boundary > Constraint)

基于整体坐标系,定义边界条件。其中,自动约束边界功能是根据整体坐标系方向对模型左/右/下端部自动设置位移约束。

- 在自动表单上,输入名称和边界条件组名称。
- 点击[确认]键。

★ ^ぜ:静力/边坡分析>边界条件>水位 (Static/Slope Analysis > Water Level)

模拟地表面饱和的状态。在 GTS NX 上,对三维空间上的水位也可以使用空间函数设置。

- 在工作目录树>几何形状上,点击鼠标右键,点击[显示]。
- 在面表单上,目标面选择相应地表面的面。
- 间距输入 '5'。
- 名称输入'水位'后,点击[确认]键。

5.3 设置分析工况

★^I¥:分析>分析工况>新建 (Analysis > Analysis Case > General)

设置分析方法和输出的模型数据。可以用高级选项控制分析及输出结果类型。

- 名称输入'旱季'。
- 分析类型选择 '边坡稳定分析(SRM)'。
- 在分析控制选项>边坡稳定(SRM) 表单上,在'高级非线性参数'中,勾选'弧长法(arclength)'。
- 把所有网格和约束条件、荷载条件移动到激活数据栏上。
- 在控制结果选项上,输出类型勾选'应变'。
- 点击[适用]键。
- 用同样的方法也生成雨季的分析工况。
- 雨季时,在控制分析选项>一般表单上,勾选定义水位,水位值选择 '1',函数选择
 '水位'。

II. AN LET AL LET ME SET		高级非线性参数	×]
▶非线性分析选项		非线性求解器参数 - 弧长参数 ☑ 使用自动弧长 最小弧长可调整比率 最大弧长调整比率 分析选项 ☑ 使用线搜索	0.25 4 确认 取消	
	輸出控制		分析控制	— X-
▶控制结果(勾选应变)	输出类型输出选项		一般 边坡稳定(SRM)	
▶▶控制分析(指定水位)	 ▼与入所有数活网格组的结果 中点输出 ▼位移 ▼位移 ▼应用荷载 ⑦俗组 ▼反力 网格组 ▼ 	元输出 2]集中力	水压力 同自动考虑水压力 水位	
	网络点 网络组 单 輸出法項 = ::::::::::::::::::::::::::::::::::::	】状态 网络组 「元輸出位置」	 ☑ 定义水位 □ 给网格组定义水位 	1 m 水位 → 100 m 1000 m 100 m
		2D中间平面结果	饱和度作用 一考虑非饱和作用	
	*	1994428X8X 4 V	最大负孔隙压力 ☑ 最大的限负孔隙压力	0 kN/m^2
		通认 取消	- 不排水条件 	

5.5 运行分析

★ 季: 分析>分析>运行 (Analysis > Analysis Case > Perform)

运行分析。

() Тір

分析过程中可以实时查看计算过程。在[信息输出窗口]可以查看结果是否收敛、警告和报错等信息。 在分析开始前模型将自动保存。模型相关信息将以*.OUT 文件形式保存在模型所在位置文件夹。 分析时输出结果可以在分析>分析工况>添加>输出控制中设置。如果勾选二进制/文本设置输出选

项的情况下,分析后节点及单元结果将一起输出到*.OUT 文件上。

第6部分

结果

分析后,在结果目录树上可以查看变形、应力等结果。所有结果可以按云图、表格、图 形等提供。在本例题中,需要查看的主要结果项目如下。

- 安全系数/破坏形状
- 通过'剪切面(Clipping plane)'评估结果。
- 6.1 安全系数/破坏形状

在运行强度折减法(SRM)后,在结果目录树上就能立即确认边坡的最小安全系数。可以选择岩土的最大剪切应变(Max. Shear Strains)确认破坏形状。

• 在工作目录树>结果>旱季>边坡稳定分析中,选择查看结果的阶段(输出最小安全系数的阶段) > Solid Strains > E-MAX SHEAR。

▶最大剪切应变(旱季)

▶▶最大剪切应变(雨季)

SOLID STRAIN E-MAX SHEAR, None +1.23079-001 0.1% +1.22579-001 0.1% -2.22838-002 0.5% -5% -5% -5.13273-002 2.8% +1.15776-002 1.5% -5.13273-002 2.8% +1.15776-002 1.5% -5.13273-002 2.8% +1.025766-002 1.0.0% -5.9% -1.02666-002 -1.7.3% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002 -1.5% -1.02666-002

6.2 查看剪切面

在 GTS NX 上,可以使用'剪切面'分割模型,确认各剪切面上的结果。

- 在工作目录树>结果>旱季>边坡稳定分析上,选择查看结果的阶段(输出最小安全系数的阶段) > Solid Strains > E-MAX SHEAR。
- 在高级视图工具条上,选择剪切面(¹)。在定义剪切面时,平面方向输入'X'、距离 输入'125m'后点击[添加]键,生成平面1的剪切面。

▶剪切面选项

▶▶剪切面&定义平面

SOLID STRAIN E-MAX SHEAR , None +1.21250e+000

1.19

1.10

+1.11147e+000

+1.01043e+000

+9.09398e-001

+8.08363e-001

+7.07327e-001

+6.06292e-001

+5.05256e-001

+4.04220e-001

+3.03185e-001

+2.02149e-001

+1.01114e-001

+7.82690e-005

•

•

Basic Tutorials

取消勾选'显示封闭部分'。并在分析结果>一般>线类型中,选择'无线'。

在定义剪切面中点击">>"键,通过指定多个的平面,可以轻松的确认边坡在特定位置上的破坏形状。

▶多重破坏面(旱季)

▶破坏面(旱季)

▶▶破坏面(雨季)

▶▶多重破坏面(雨季)